Distinct domains of an oligotopic membrane protein are Sec-dependent and Sec-independent for membrane insertion.
نویسندگان
چکیده
منابع مشابه
Anionic lipids stimulate Sec-independent insertion of a membrane protein lacking charged amino acid side chains.
We have investigated the influence of the different lipid classes of Escherichia coli on Sec-independent membrane protein insertion, using an assay in which a mutant of the single-spanning Pf3 coat protein is biosynthetically inserted into liposomes. It was found that phosphatidylethanolamine and other non-bilayer lipids do not have a significant effect on insertion. Surprisingly, the anionic l...
متن کاملSec-dependent membrane protein insertion: sequential interaction of nascent FtsQ with SecY and YidC.
Recent studies identified YidC as a novel membrane factor that may play a key role in membrane insertion of inner membrane proteins (IMPs), both in conjunction with the Sec-translocase and as a separate entity. Here, we show that the type II IMP FtsQ requires both the translocase and, to a lesser extent, YidC in vivo. Using photo-crosslinking we demonstrate that the transmembrane (TM) domain of...
متن کاملReconstitution of Sec-dependent membrane protein insertion: nascent FtsQ interacts with YidC in a SecYEG-dependent manner.
The inner membrane protein YidC is associated with the preprotein translocase of Escherichia coli and contacts transmembrane segments of nascent inner membrane proteins during membrane insertion. YidC was purified to homogeneity and co-reconstituted with the SecYEG complex. YidC had no effect on the SecA/SecYEG-mediated translocation of the secretory protein proOmpA; however, using a crosslinki...
متن کاملSec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane--distinct translocases and mechanisms.
In bacteria, two major pathways exist to secrete proteins across the cytoplasmic membrane. The general Secretion route, termed Sec-pathway, catalyzes the transmembrane translocation of proteins in their unfolded conformation, whereupon they fold into their native structure at the trans-side of the membrane. The Twin-arginine translocation pathway, termed Tat-pathway, catalyses the translocation...
متن کاملDistinct Albino3-dependent and -independent pathways for thylakoid membrane protein insertion.
The homologous proteins Oxa1, YidC, and Alb3 mediate the insertion of membrane proteins in mitochondria, bacteria, and chloroplast thylakoids, respectively. Depletion of YidC in Escherichia coli affects the integration of every membrane protein studied, and Alb3 has been shown previously to be required for the insertion of a signal recognition particle (SRP)-dependent protein, Lhcb1, in thylako...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 1992
ISSN: 0021-9258
DOI: 10.1016/s0021-9258(18)48375-5